Data Structures

When to use what, why, and how

Python Data Structures

o list

e tuple

® set

e dictionary

Common Functions

e indexed

O access
o search
e mutable
© add
o delete
o and indexed
m set
o and ordered
m append
m insert

e contains

list - [0, 1, 2]

mutable

ordered

indexed by position (number)
homogenous

list - when to use it

e need random access to elements
e will deal with items individually

e when 1in doubt

list - when to use it and why

® need random access to elements
o 1indexed by position

e will deal with items individually
o homogenous

e when 1n doubt
o mutable
o ordered
o 1indexed by position

list - how to use

e indexed

O access
o search
e mutable
© add
o delete
o and indexed
m set
o and ordered
m append
m insert

e contains

list - how to use it

e indexed
o access: 1l[<index>]
o search: l.index(<item>)
e mutable
o add: l.append(<item>)
o delete: l.remove(<item>)
o and indexed
m set: 1l[<index>] = <item>
o and ordered
m append: l.append(<item>)
m insert: l.insert(<index>, <item>)
e contains: <item> in 1

list - how to use it

e indexed
o access: 0(1)
o search: 0(n)
e mutable
o add: 0(1)
o delete: 0(n)
o and indexed
m set: 0(1)
o and ordered
m append: 0(1)
m insert: 0O(n)
e contains: 0(n)

list - how to use it

e indexed
o access: l[<index>]
o search: l.index(<item>)
e mutable
o add: l.append(<item>)
o delete: l.remove(<item>)
o and indexed
m set: 1l[<index>] = <item>
o and ordered
m append: l.append(<item>)
m insert: l.insert(<index>, <item>)
e contains: <item> in 1

tuple - (0, 1, 2)

immutable

heterogenous

ordered

indexed by position (number)

tuple - when to use it

e order and positions are meaningful
and consistent

e deal with data as a coherent unit

tuple - when to use it and why

e order and positions are meaningful

and consistent

o immutable

o heterogenous

o ordered

o 1indexed by position

e deal with data as a coherent unit
o heterogenous

tuple - how to use

e indexed

O access
o search
e mutable
© add
o delete
o and indexed
m set
o and ordered
m append
m insert

e contains

tuple - how to use it

indexed

©)
©)

access: t[<index>]
search: t.index(<item>)

mutable: N/A

©)
©)
©)

add

delete

and indexed
m set

and ordered
m append
m insert

contains: <item> in t

tuple - how to use it

e indexed
o access: 0(1)
o search: 0(n)
e mutable: N/A
e contains: 0(n)

tuple - how to use it

e indexed

o access: t[<index>]

o search: t.index(<item>)
e mutable: N/A
e contains: <item> in t

set - {06, 1, 2}

e mutable
e unordered
e no duplicate elements

set - when to use it

e need fast membership checking

e comparing with other sets

set - when to use it and why

e need fast membership checking
© no duplicate elements

e comparing with other sets

set - how to use

e indexed

O access
o search
e mutable
© add
o delete
o and indexed
m set
o and ordered
m append
m insert

e contains

set - how to use it

e indexed: N/A

O access
o search
e mutable

o add: s.add(<item>)
o delete: s.remove(<item>) OR s.discard(<item>)
o and indexed: N/A

m set

o and ordered: N/A
m append
m insert

e contains: <item> in s

set - how to use it

e indexed: N/A
e mutable
o add: 0(1) | o(n)
o delete: 0(1) | 0(n)
o and indexed: N/A
o and ordered: N/A
e contains: 0(1) | 0(n)

set - how to use it

e indexed: N/A
e mutable
o add: s.add(<item>)
o delete:
m s.remove(<item>) # KeyError if <item> not in s
m s.discard(<item>) # nothing if <item> not in s
o and indexed: N/A
o and ordered: N/A
e contains: <item> in s

set - comparing with other

e do s and s' have no elements in common?
s.isdisjoint(s"')
e 1is s a subset of s'? == is every elt in s in s'?

s.issubset(s') == s <='s

e new set w/ elements from s and S'
s.union(s') == s | s'

e new set w/ elements that s and s' have in common
s.intersection(s') == s & s’

e new set w/ elements in s, but not s’
s.difference(s') ==s - s'

e new set w/ elements in s or s', but not both

s.symmetric_difference(s') == s * s'

dictionary - {'zero': @, 1: 'one', (2,'two'): '2'}

e mutable
e unordered

e indexed by unique keys
o string, number, or tuples containing keys

dictionary - when to use it

e need fast membership checking

e when a tuple won’t work

dictionary - when to use it and why

e need fast membership checking
o 1indexed by unique keys

e when a tuple won’t work

o need to update: mutable
o too many fields: indexed by unique keys

dictionary - how to use it

e indexed

O access
o search
e mutable
o add
o delete
o and indexed
m set
o and ordered
m append
m insert

e contains

dictionary - how to use it

e 1indexed
o access: d[<key>]
o search: for k,v in d.items(): if v==<value>: return k
e mutable
o add: d[<key>] = <value>
o delete: del d[<key>]
o and indexed
m set: d[<key>] = <value>
o and ordered: N/A
m append
m insert
e contains: <value> in d.values() AND <key> in d.keys()

dictionary - how to use it

e 1indexed
o access: 0(1) | o(n)
o search: 0(n)
e mutable
o add: 0(1) | o(n)
o delete: 0(1) | 0(n)
o and indexed
m set: 0(1) | o(n)
o and ordered: N/A
e contains
o value: 0(n)
o key: 0(1) | o(n)

dictionary - how to use it

e 1indexed
O access: d|<key>]|
o search: for k,v in d.items(): if v==<value>: return k
e mutable
o add: d[<key>] = <value>
o delete: del d|<key>]
o and indexed
m set: d[<key>] = <value>
o and ordered: N/A
e contains
o value: <value> in d.values()
o key: <key> in d.keys()

What data structure should we use to...

e Track how a stock performs each day

e Store an (x, y) coordinate

e Store a to-do list

What data structure should we use to...

e Track how a stock performs each day
list

e Store an (x, y) coordinate
tuple

e Store a to-do list
list or tuple

What data structure should we use to...

e Store a to-do list (and check off
tasks)

e Manage inventory

e Describe a car

What data structure should we use to...

e Store a to-do list (and check off
tasks)

list

e Manage inventory at a grocery store
dictionary

e Describe a car
tuple or dictionary

What data structure should we use to...

Map the path we took on a hike

What data structure should we use to...

Map the path we took on a hike
list of tuples

What data structure should we use?

My roommate and I use an app that lets us
collaboratively build our grocery list. The app
lets us both view the list, so he takes the top
half and I take the bottom half.

We bump into each other in the cereal aisle as
we both get a box of Cap’n Crunch. Both of our
lists our correct, but they have our items in
different orders.

What data structure should we use?

What data structure should we use to
make sure we still get the correct

items in the correct quantities on our
list?

What data structure should we use?

What data structure should we use to
make sure we still get the correct
items in the correct quantities on our
list?

set

What data structure should we use?

If you wrote the grocery list app,

what data structure would you use to
store the list?

What data structure should we use?

If you wrote the grocery list app,
what data structure would you use to
store the list?

list

What data structures should we use to...

Build a calendar for 2015

What data structures should we use to...

tuple (i = day) of lists of tuples (events)
([1,

15

[(“my bday”, “”), (“midterm 2”7, “latimer”)],

.2)

What data structures should we use to...

tuple (i = day) of lists of dictionaries
(events)
(L1,

1,

{title: “my bday”, location: “},

{title: “midterm 2”, location: “latimer”}],

)

What data structures should we use to...

tuple (i = month) of tuple (i = day) of lists of
tuples/dictionaries (events)

(L1, [1,
[{title: “my bday”, location: “*},

{title: “midterm 2”, location: “latimer”}],

),
(e00)
)

Bonus! Recursive Data Structures

e linked 1list
® tree

linked list - Link(©®, Link(1, Link(2)))

mutable
homogenous
ordered
memory-efficient

linked l1list - when to use it

need 0(1) insertions/deletions

don’t know how many items up front
don’t need random access to elements
need to insert items in middle of
list

linked list - interface

1 = Link(<first>, <rest>=empty)
l.first

l.rest

1[<index>]

len(1)

tree - Tree(9, [Tree(l), Tree(2)]

e mutable
® ordered

tree - when to use it

e data 1s hierarchical
e don’t know how many items up front

tree - interface

+ + + + +

= Tree(entry, branches)

.entry
.branches
.1s _empty
deft
.right

binary tree -

BinaryTree(O, BinaryTree(1l), BinaryTree(2))

e mutable
® ordered

binary tree - when to use it

e binary search tree: search at

moderate pace
o (list < bst < linked list)

binary tree - interface

e b = BinaryTree(entry, left=empty,
right=empty)

0.entry

n.1s_empty

0. left

0.right

